

SAFETYSENSE LEAFLET

21_d DITCHING

Piel Emeraude - Irish Sea 1991

1 INTRODUCTION
2 KNOWLEDGE
3 PREPARATION
4 PRACTICE
a) SUPPLEMENT A
b) SUPPLEMENT B
5 MAIN POINTS

1 INTRODUCTION

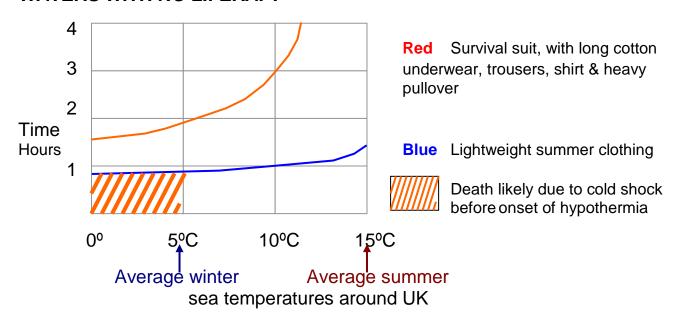
- a) Ditching is a deliberate emergency landing on water. It is **NOT** an uncontrolled impact.
- b) Available data from both the UK and the USA indicates that 88% of controlled ditchings are carried out injuries with few to pilots passengers. There is no statistical survival difference between high wing and low wing aeroplanes. However, ditchings despite most being survivable, approximately 50% survivors die before help arrives.
- c) This leaflet is mainly aimed at private operators of aeroplanes but much of the advice will be equally relevant for helicopters. It includes details of how to improve the chances of survival after a ditching.
- d) Details of the UK Search and Rescue System together with appropriate advice are available in the UK AIP <u>GEN 3.6</u>.

January 2013 www.caa.co.uk/publications

2 **KNOWLEDGE**

- a) Do you know the best glide speed and how far your aircraft can glide per 1,000 ft of altitude in still air? It's in the Pilot's Operating Handbook or Flight Manual.
- b) The main cause of death after ditching is drowning, usually hastened by hypothermia and/or exhaustion. It is essential to consider the reasons for this and how the risks may be minimised.
- c) In many cases, the deceased persons did not have lifejackets, either worn or available to them. It is vital TO WEAR a suitable lifejacket whilst flying in a single-engined aircraft over water beyond gliding range from land.
- d) Selection of the correct lifejacket is most important, since there are many different types available. Some so-called 'lifejackets' are in fact little more than buoyancy aids which are used for leisure boating and have a permanent buoyancy of about 7 kg (15 lb). This kind of 'lifejacket' will not keep an unconscious person afloat. Worse still, the inherent buoyancy may prevent a person from escaping from an inverted aircraft.
- e) A proper lifejacket provides 16 kg (35 lb) of buoyancy which can be enough to keep an unconscious person afloat with the head above water. It is essential to use a lifejacket designed for constant wear since this has the ruggedness and durability to prevent tearing and other damage during normal use.

- f) Many automatically inflated by the lifejackets, used sailing community, are activated when a soluble tablet becomes wet. This type is totally unsuitable for general aviation use as it will inflate inside a water-filled cabin. thus seriously hindering escape.
- g) Airline lifejackets provided for passengers are unsuitable for GA use, because they are not durable enough for significant constant wear.



- h) When worn, the lifejacket should not become entangled in the harness or belt. It should include the following (see supplement B):
- a light activated by pulling a toggle or by immersion in sea water;
- a whistle for attracting attention;
- a crotch strap to stop the lifejacket from riding up over the face;
- a spray hood or plastic face mask which can be pulled over the face and lobes of the jacket. It will reduce heat loss through the head as well as the amount of water flowing across the face; and
- high visibility colour with reflective tape.
- i) Wearing a suitable lifejacket is not the end of the story. When not in use, the lifejacket must be properly stored in a dry environment and regularly serviced.

- j) A lifejacket should be serviced at least every year (more frequently if required by the manufacturer) by an approved servicing organisation or appropriately licensed engineer. The weight, and thus contents, of the gas cylinder will be checked, and the lifejacket itself examined for damage and leaks; and ancillary equipment inspected for serviceability.
- k) Whilst properly fitted lifejackets can prevent people from drowning, none provide any protection against hypothermia.
- I) Hypothermia is defined as lowering of the 'core' body temperature. In cold water, the skin and peripheral tissues cool very rapidly, but it can be 10 to 15 minutes before the temperature of the heart and brain begin to decrease. Intense shivering occurs in a body's attempt to increase its heat production and

- counteract the large heat loss. Decreasing consciousness, mental confusion and the loss of the will to live occur when core body temperature falls from the normal 37°C to about 32°C. Heart failure is the usual cause of death when core body temperature falls below 30°C.
- m) The temperature of the sea around British coasts is at its coldest in March, and below 10°C between October and April. Survival times for individuals in cold water will vary depending greatly on water individual temperature, build, metabolism, fitness and the amount of clothing worn. The graph shows average survival times. Note that without a life-raft or survival suit there is little difference between survival times in summer and winter.

LIKELY SURVIVAL TIME FOR A RELATIVELY THIN PERSON IN CALM WATERS WITH NO LIFERAFT

INABILITY TO PERFORM TASKS WILL OCCUR LONG BEFORE DEATH

- n) In addition, several other responses to the shock of sudden immersion in cold water can cause death:
- heart failure is possible for those with weak circulatory systems, particularly the elderly;
- hyperventilation can increase the risk of swallowing water;
- cold makes coordinated movement difficult; and
- ability to hold one's breath is severely curtailed, perhaps to just a few seconds, thus reducing the chances of successful escape from a submerged aircraft.

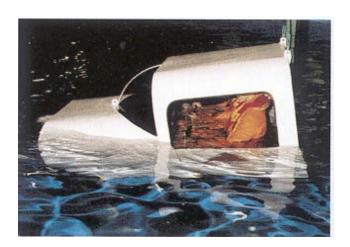
The effect of shock and panic can amplify the above effects, so it is important to consider ways of reducing the risk of both cold shock and hypothermia.

o) Clearly, the ideal solution is to get out of the water by using a life-raft.

p) As with lifejackets, an aviation life-raft, with a recognised approval, is the safest option and this must also be regularly serviced and properly stored when not in use. The use of a life-raft, together with other survival tips, are detailed later in this leaflet. However, it is important to know how to use all your survival equipment.

- q) A marine life-raft is **NOT** suitable for aviation use because of a significant difference in the inflation system. Any malfunction of a marine CO₂ cylinder will cause it to vent INTO the life-raft, inflating it, and filling the cockpit possibly causing catastrophic results. Aviation life-raft cylinders are designed to vent to atmosphere in the event of a malfunction. (Just in case, carry a pocket knife or screwdriver.)
- r) If, for any reason, a life-raft is not available, the survival time in cold water can be significantly increased by wearing suitable protective clothing.
- s) A survival suit specially tailored for general aviation use is most effective, and can prolong life by keeping hypothermia at bay for the longest time. Whilst some pilots may feel that this level of protection is 'over the top' for a cross-Channel flight, there have been cases where lives have been saved by the wearing of such clothing. A leak-proof suit, properly worn, can increase survival time from 3 to 10 times depending on the insulating qualities of the clothes underneath. Wear layers of suitable clothing to create layers of air.

- t) As with all safety and survival equipment, it should be the correct type, with a recognised approval; be a comfortable fit, properly maintained and serviced; and be carefully stored when not in use.
- u) If a survival suit is not used then, generally, the more layers of clothes that are worn, the longer will be the survival time. This will vary considerably depending on the type of clothing and the amount being worn. If time permits, put on as much clothing possible. including as headwear, since а very large proportion of body heat escapes through the head. Wet wool retains 50% of its insulating properties. whereas wet cotton retains only 10%. Watersport suits could also considered.
- v) An Emergency Locator Transmitter (ELT) must be of an approved type and registered with the UK Distress and Security Beacon Registry (UK DASBR) at the Falmouth MRCC (see AIC P 134/2012, where a registration form can be found). A Personal Locator Beacon (PLB) is a portable radio transmitter which will greatly assist in locating you after ditching. It should able to float. be and have COSPAS/SARSAT certification. As with a portable ELT(S), the modern generation PLBs operate on 406-406.1 MHz, and must also registered with the UK DASBR. Older versions operating on 121.5 MHz are still available, but their signals will not be processed by satellite. Those incorporating **GPS** automatically position information. transmit reducing the time taken in search and rescue.


- w) The 406 MHz signals can be received by orbiting and geostationary satellites carrying COSPAS/SARSAT equipment. These relay alerts to the Aeronautical Rescue Co-ordination Centres. The time between activation and alerting the RCC should be a matter of minutes, but identifying a position without a GPS input will take longer.
- x) 121.5 MHz (or in some cases 243.0 MHz) transmissions from an activated PLB or ELT(S) are used to 'home' rescue services to you. A 406 MHz PLB and ELT(S) sends this additional signal simultaneously.
- y) Pilots should attempt to transmit an initial distress call on a conventional communications radio BEFORE ditching to alert the RCC.
- z) Some PLBs are designed to float in the water with the transmitting aerial pointing upwards - the aerial's optimum transmitting position. Most PLBs have a self-test facility. Users MUST NOT test the activation mechanism - this must only be done accordance with the in manufacturer's maintenance instructions.

3 PREPARATION

a) Many ditchings and subsequent drownings could have been prevented by careful planning and preparation.

b) Those who frequently fly over-water should consider attending course. Here. survival non-threatening environment, you will be taught the correct operation of lifejackets, methods of getting into life-rafts and the problems which might be encountered after ditching.

c) Some specialist companies arrange sessions in swimming pools with wave machines whilst others have light aircraft structures which can be used as 'dunkers' to practise underwater escapes.

- d) On the day of the flight, obtaining and correctly interpreting the weather forecast is vital. Whilst the weather might be pleasant on one side of the Channel, it may be very different on the other side. It would be no fun to leave English shores in CAVOK, only struggle against unexpected headwinds, or find sea fog or lowering cloudbases resulting from warm air over the cold sea - any of which could force you to return.
- e) Use forecast wind to ensure that enough fuel is onboard for the flight, plus any diversions, which may include a return from overhead the destination or else to a suitable alternative airfield. In many accidents and some ditchings, the reason for engine stoppage has proved to be fuel exhaustion.
- f) Thorough pre-flight inspection of the aircraft is essential, including double-checking that fuel and oil levels are satisfactory.
- g) A four-person life-raft can weigh as much as 15 kg (35 lb) and is a significant extra load. Take care to determine the total weight and centre of gravity position and take these into account (see SafetySense leaflet 9 Aircraft weight and balance).
- h) Pilots must review any recommended procedures contained in the Aircraft Flight Manual or Pilot's Operating Handbooks for both a power-on and a power-off ditching.

- law requires that, i) The as commander of the aircraft, you MUST consider the survival equipment appropriate to the flight. You must also brief the passengers on the emergency escape features of the operation of the aircraft. seats. seatbelts etc. On a flight across water in a single-engined aircraft, this briefing should be extended to ensure that each passenger knows how to operate the lifejacket they should be wearing. Brief the passengers on the contents and the features found on the lifejacket, including how to inflate it if the bottle fails.
- j) Before boarding the aircraft, brief the passengers carefully:
- on the location of the life-raft;
- on the order in which people should vacate the aircraft in the event of a ditching and who will be responsible for taking the life-raft with them;
- that lifejackets must not be inflated until clear of the aircraft and that the instructions normally state 'pull the toggle' to inflate;
- to remove headsets and glasses and to stow glasses on their person prior to touchdown;
- to tighten seat straps/harnesses prior to touchdown on the water.
 Rear-seat passengers should assume a braced position; and
- by indicating reference points on the aircraft's internal structure that they should reach for when exiting the aircraft as well as any features which might impede exit.

- k) The life-raft must be **SECURED** in an accessible position. If flying alone, place the life-raft on the front passenger seat and secure it with the harness. Check it will not interfere with the controls, look-out or exit.
- I) Many pilots carry a hand-held VHF radio and/or mobile phone; put them in a sealed plastic bag along with any hand-held GPS in order to keep them dry. Consider including a copy of this leaflet. A waterproof torch, or better still a portable waterproof strobe, could also be useful. Make sure that the bag is accessible in the event of a ditching.
- m) Once airborne, particularly over the sea, it is prudent to fly as high as can be safely and legally flown. This will give better radio reception and more time between the onset of a problem and ditching. Consider a high-level longer crossing compared with a short one at low level.
- n) Before crossing the coast, carry out a particularly careful cruise check (FREDA check) to ensure that everything is normal.

SSL21d 7 January 2013

4 PRACTICE

4.1 Ditching

- a) The worst has happened you are unable to maintain height and a ditching appears likely. If you are flying a twin-engined aircraft and one engine stops, everyone should put on a lifejacket. Make a PAN call.
- b) Immediately adjust the airspeed for the best glide speed and, taking into account the wind direction, either aim towards the nearest coast or towards shipping. Remember that a medium-size vessel is the best choice to ditch near, since a large ship may take many miles to slow down. In any event, avoid landing immediately in front; landing alongside and slightly ahead is better.
- c) At this stage, transmit a MAYDAY call, using the frequency you are working or the emergency frequency of 121.5 MHz. If fitted, immediately select transponder code

- to 7700, unless you are already using an allocated code. Transmit the best position fix that you can, this may be by means of VOR, DME or GPS or even your estimate in relation to the coastline. Make this as accurate as you can.
- d) Check immediately for any problem which can be dealt with by vital actions such as: selecting carburettor heat, change of fuel tank, use of the electric fuel pump, etc.

ABOVE ALL, THROUGHOUT, FLY THE AIRCRAFT.

e) Conventional wisdom is that the swell direction is more important than wind direction when planning a ditching. By the time you are down to 2,000 ft, the swell should be apparent and your aim should be to touchdown parallel to the line of the swell, attempting, if possible, to land along the crest. The table below describes sea states.

Wind Speed	Appearance of Sea	Effect on Ditching
0-6 knots	Glassy calm to small	Height very difficult to judge above
(Beaufort 0-2)	ripples.	surface. Ditch parallel to swell.
7-10 knots	Small waves; few if	Ditch parallel to swell.
(Beaufort 3)	any white caps.	
11-21 knots	Larger waves with	Use headwind component, but still
(Beaufort 4-5)	many white caps.	ditch along general line of swell.
22-33 knots	Medium - large waves,	Ditch into wind on crest or
(Beaufort 6-7)	some foam crests,	downslope of swell.
	numerous white caps.	
34 knots & above	Large waves, streaks	Ditch into wind on crest or
(Beaufort 8+)	of foam, wave crests	downslope of swell. Avoid at all
	forming spindrift.	costs ditching into the face of a
		rising swell.

- f) If you can see spray and spume on the surface, then the surface wind is strong. In this case it is probably better to plan to land into wind, rather than along the swell. Winds of 35 to 40 kt are generally associated with spray blowing like steam across waves and in these cases the waves could be 10 ft or more in height. Aim for the crest again or, failing that, into the downslope.
- g) The force of impact can be high so ditch as slowly as possible whilst maintaining control.
- h) Retractable gear aircraft should be ditched with the gear retracted (beware of automatic lowering systems). The Flight Manual/Pilot's Operating Handbook may provide suitable advice. Consider unlatching the door(s).
- i) Hold the aircraft off the water so as to land taildown at the lowest possible forward speed, but do not stall into the water from a height of several feet.
- j) There will often be one or two minor touches, 'skips', before the main impact with the water. This main impact will usually result in considerable deceleration with the nose bobbing downwards and water rushing over the cowling windshield. It may even smash the windshield - leading you to think that the aircraft has submerged.
- k) With a high-wing aircraft, it may be necessary to wait until the cabin has filled with water before it is possible to open the doors. A determined push or kick on the windows may remove them.

- I) The shock of cold water may adversely affect everyone's actions and this is why a proper pre-flight passenger briefing which emphasises reference points and the agreed order in which to vacate the aircraft is vital. Do NOT inflate lifejackets inside the aircraft, inflate them as soon as vou are outside. The natural buoyancy of the un-inflated life-raft may make it hard to manoeuvre it out of a sinking aircraft.
- m) Consider leaving the master switch and the anti-collision beacon or strobes on. If the aircraft floats for a while or sinks in shallow water, the lights may continue operating and provide a further sign of your position. Exit the aircraft as calmly, but as swiftly, as possible. If it is afloat after the passengers are clear, provided you don't put yourself in danger, deploy loose items that could float on the surface and help rescuers spot you, e.g. blankets, overnight bags, seat cushions. Take the first aid kit and plastic bag with PLB, GPS, hand-held radio, phone etc. with you.

4.2 The Life-raft

a) Before inflating the life-raft, it should be tied to someone holding firmly onto the aircraft, so that it doesn't blow away. (It will float even before it is inflated.) Do NOT attach it to the sinking aircraft. The lifejacket harness or belt would be a good attachment point. If possible, inflate the life-raft on the downwind side so that it is not blown against the aircraft and damaged. (A pocket knife to cut the cord would be easier than trying to undo a wet knot.) If necessary, it may be easier to turn the raft upright if you are able to stand on the wing.

- b) Should the life-raft need to be turned upright while you are in the water, get downwind of it and rotate it so that the inflation cylinder is towards you. The weight of the cylinder and the wind will help turn it over. Avoid getting tangled in the attaching cord.
- c) If possible, get into the life-raft from the wing, or lower yourself gently into the water to keep your head dry. Remove high-heeled shoes and **do not** leap or jump into the life-raft as this may damage it. If you have to enter the water first, hold the bottom of your lifejacket with one hand and place the other hand over your mouth and nose.
- d) Climb into the life-raft. If anyone is in the water and injured or cannot climb aboard, position their back towards the entrance. Two people should then hold the person under the armpits (not by the arms) while any others balance the life-raft by sitting at the far end. Push the person initially down into the water, then give a good pull as the buoyancy from the lifejacket pushes the person back up again. Warn them first!
- e) Once everyone is aboard the life-raft, inflate the floor, trail the sea anchor as soon as possible, and erect the canopy to prevent wind chill hypothermia affecting wet bodies. PROTECTION is the kev survival. Get all the water out using the bailer and mop up with a sponge clothing. or spare item of necessary, fully inflate the buoyancy chambers. All should be firm, but not rock hard.
- f) Ensure that at least one person is tied to the life-raft just in case a large wave should overturn it; then it

- should be possible to get back into it and help the others aboard.
- g) To avoid vomiting, ensure that everyone takes a sea sickness pill straight away do not wait for the onset of sickness. The smell inside the life-raft and the loss of visual references will increase the risk of sickness. (Vomiting causes serious fluid loss.) Sea sickness pills are normally found in a pouch inside the life-raft. You can survive around the UK without water for over four days. **NEVER** drink sea water.
- h) Once the canopy is erected, you will have PROTECTION. Wring out your clothes as much as possible and, if you have anything suitable, insulate the floor.
- i) Even on a warm day, keep the cover up to provide protection from the sun.
- j) Treat any injuries and administer first aid. It will have been a traumatic experience; some survivors may be suffering from shock, which can affect mental processes.
- k) The second element of survival is LOCATION, so switch on your PLB. Rig it as high as possible with the aerial vertical. DO NOT leave it lying on the floor. If a hand-held radio is available, make sure it is ON and working. Selecting 121.5 MHz will confirm that your PLB homer is working, and a Mayday call may be heard by an overflying aircraft. A GPS position will assist rescuers. If close to shore, you could try making contact on a mobile phone. The UK D&D number is 01489 612406, but if in UK waters it may be easier to call 999 and ask for "Coastquard". Text messages may reduce battery consumption and give greater range.


I) Use any other signalling equipment which might be available. However, with pyrotechnics do read the instructions first and check, then check again since some double-ended. (It would be disastrous if you thought you were about to set off a smoke signal only to discover a white hot magnesium flare burning inside the life-raft!)

m) Take turns to keep watch and only use flares or smoke signals when you are sure somebody will see them, not, for instance, as a search aircraft is flying away from you. Flares should be held at arm's length, outside and pointing away from the life-raft as they often drop hot deposits. If you have any gloves or other protection, wear them when pyrotechnics. Sweep using horizon with the heliograph (mirror) at any time when the sun is shining. Any marker dye will normally last around three hours in the vicinity of the life-raft, so make an intelligent guess as to when to use it - normally once a search aircraft is seen. Any light, even the backlight of a mobile phone, can be seen a long way at night through night vision devices routinely used by rescue teams, but extinguish strobes and other bright lights when certain you have been found.

4.3 No Life-raft

- a) If you do not have a life-raft, but have to survive in the water with only a lifejacket, then this is a life-threatening situation. However, do NOT give up hope; the will to survive is the most powerful force to prolong life.
- b) The sea is cold. UK waters only reach 15°C even in summer and are below 10°C from October to April. If you are not wearing an immersion suit; then it is **ESSENTIAL** that you and any other survivors immediately adopt the following measures in order to conserve body heat:
- The cold will cause you to lose the use of your hands very quickly, so perform any manual tasks straightaway while you are still able and if possible tie yourselves together.
- Ideally tie the PLB onto the lifejacket. Try to keep the aerial vertical.
- Do NOT swim in an attempt to keep warm. The heat generated due to more blood circulation in the arms, legs and skin will just be transferred to the cold water.
- Generally, don't attempt to swim to the shore unless the distance is say less than 1 km and you are a strong swimmer.
- The main aim is to conserve heat.
 The most critical areas of the body for heat loss are the head, sides of the chest and the groin region. If the lifejacket has one, cover your head with the spray hood.

- c) If there is a group of survivors, tie yourselves together and huddle with the sides of your chests and lower bodies pressed together. If there are children, sandwich them within the middle of the group for extra protection.
- d) A lone survivor should adopt the 'HELP' position (this is the Heat Escaping Lessening Posture). The use of this position significantly increases survival times.

- Hold the inner sides of your arms in contact with the side of the chest. Hold your thighs together and raise them slightly to protect the groin region.
- e) A single floating person is very difficult to see from the air. When a search aircraft is close enough to be able to see you, signal using your heliograph (mirror). If this is not available, sparkling light reflected by splashing water with your arms may attract attention.

f) To attract the attention of surface vessels, use the whistle attached to the jacket; shouting is much less effective and more exhausting to the survivor.

4.4 No Lifejacket or Life-raft

- a) This is a very life-threatening situation; however, again **DO NOT** give up hope.
- b) Use anything from the aircraft such as seat cushions, plastic boxes or pieces of polystyrene that will help you stay afloat.
- c) If all else fails an inflated plastic bag or wet shirt are better than nothing.
- d) Follow the advice of earlier paragraphs.

4.5 The Rescue

- a) If survival equipment is dropped to you, it may consist of two attached packs, get into the raft and investigate the equipment in the other pack.
- b) When help arrives, whether it is a boat or helicopter, stop signalling and wait for instructions from the rescuer. DO NOT:
- attempt to stand up; or
- try doing things on your own initiative.

- c) If a helicopter is making the rescue, wait for the winch man to tell you what to do; do not reach out and grab the cable.
- d) The winch man will most likely use a strop and carry out a double lift, i.e. go up with the survivor. When the strop is secure, the survivor should put both hands by his side, or better still hold hands behind his back. Many people try to hold on to the cable on the way up. This is unnecessary and could be dangerous as it increases the risk of falling out of the strop. Equally, on approaching the door sill, don't grab at the helicopter or try to help yourself in, the crew are much better at this than you!
- e) Once in the helicopter, your inflated lifejacket is a hazard. You will either be asked to deflate it, or you will be given a new jacket by the crew.
- f) In most cases, the rescue services will deflate the life-raft after rescuing you and take it away. It is neither practical nor safe to try to recover it intact and leaving it afloat may result in a false alarm.
- g) Once safely on board a rescuing boat or helicopter, de-activate your PLB.
- h) There is further information on SAR in the UK AIP <u>GEN 3.6</u> 'Search and Rescue'.

Supplement A

SUITABLE LIFEJACKETS

- CAA-Approved equipment is only required for Public Transport aircraft use and (with the exception of that designed for North Sea helicopter operations) is NOT intended for constant wear. (Note: when serviced approximately 50% of airline-style lifejackets used for GA purposes are found to be defective, versus less than 25% of the constant-wear jackets.) Thus, on non-Public Transport flights it is up to you what to wear since not all lifejackets designed for constant wear are CAA Approved. (See Supplement B.)
- There are lifejackets available that are 'Approved' to US or to European Community Standards some are designed to meet marine criteria.
- It is thus impossible to provide specific details on which are likely to be satisfactory. The subject should be discussed with manufacturers, stockists and maintainers.
- When choosing a lifejacket it will need to be a compromise of:
 - o comfort when worn;
 - convenience yet avoiding it becoming entangled in seat belt/harness;
 - o price; and
 - o durability.

Supplement B

CAA-APPROVED COMPANIES WHICH SERVICE LIFEJACKETS AND LIFE-RAFTS

*Aviation Engineering & Maintenance Ltd Seaweather Aviation Services Ltd

Stansted Division 625 Princes Road

Stansted Airport Dartford
Stansted Kent
Essex CM24 1RB DA2 6FF

Tel: 01279 680030 ext 200 Tel: 01322 275513 Fax: 01279 680395 Fax: 01322 292639

Bristow Helicopters Ltd ** SEMS Aerosafe

Safety Equipment Section 13 & 25 Olympic Business Centre

Aberdeen Airport Paycocke Road
Dyce Basildon

Aberdeen AB2 0ES Essex SS14 3EX
Tel: 01224 723151 Tel: 01268 534427
Fax: 01224 770120 Fax: 01268 281009

*FAA Approved

** They also undertake practice evenings in a pool with wave machine and have a rental service.

CAA APPROVED LIFEJACKET AND LIFE-RAFT MANUFACTURERS

Beaufort Air-Sea Equipment Ltd 0151 652 9151 ext 211

International Safety Products 0151 922 2202 ML Lifeguard Equipment 01824 704314

RFD Ltd 01232 301531 ext 102

COMPANIES KNOWN TO PROVIDE SURVIVAL TRAINING USING A 'DUNKER'

Fleetwood Offshore Survival Centre Robert Gordon Institute of Technology

Broadwater, Fleetwood 338 King Street
Lancashire FY7 8JZ Aberdeen AB24 5BQ
Tel: 01253 779123 Tel: 01224 619500
Fax: 01253 773014 Fax: 01224 619519

Humberside Offshore Training Association Warsash Maritime Centre

Malmo Road Newtown Road

Sutton Fields Industrial Estate Warsash

Hull Southampton SO31 9ZL East Yorks HU7 0YF (using ANDARK facility)

Tel: 01482 820567 Tel: 01489 576161 Fax: 01482 823202 Fax: 01489 579388

5 MAIN POINTS

- Don't panic Ditchings are SURVIVABLE. The key elements are a good ditching then PROTECTION and LOCATION. Water and particularly food are by comparison minor considerations.
- Correct actions increase your chances of survival and early rescue.
- Always wear a properly maintained constant-wear lifejacket when beyond gliding range from land in a single-engined aircraft.
- Carry a serviceable aviation life-raft, stowed so that it is accessible, or else wear a survival suit, particularly when the sea temperature is below 10°C.
- Carry a Personal Locator Beacon (and flares). Know how to use them.
- In single-engined aircraft, route to minimise the time over water or fly high to increase your glide range. Know the range per 1,000 ft of altitude.
- Carefully pre-flight the aircraft and make sure there is enough fuel for all contingencies.
- Before take-off, brief passengers on ditching procedures and survival equipment.
- Transmit a Mayday preferably on 121.5 MHz; and select 7700 on the transponder.
- Ditch along the crest of the swell, unless there is a very strong wind.
- Touch down as slowly as possible but don't stall.
- Inflate lifejackets once clear of the aircraft cabin.
- Get everyone into the life-raft as quickly as possible and get the cover up.
- Switch on the PLB (and hand-held radio or mobile phone).
- If in the water with no life-raft, conserve energy and heat by huddling together to reduce the risk of hypothermia. The will to live is the single most important factor in surviving until you are rescued.
- Have the other signalling devices (e.g. pyrotechnics, heliograph etc.) ready for use.
- Let the rescuer take control of the actual rescue.